Solid-State Redox Reaction of Oxide Ions for Rechargeable Batteries

Naoaki Yabuuchi

Department of Green and Sustainable Chemistry, Tokyo Denki University

5 Senju Asahi-Cho, Adachi, Tokyo 120-8551, Japan

The use of anion redox, especially oxide ions, is a crucial strategy to design and develop new electrode materials with high gravimetric/volumetric energy density for rechargeable lithium batteries. Reversible capacity of electrode materials is potentially further increased by the enrichment of lithium contents with less transition metals in the close-packed structure of oxide ions. Our group has reported that Li₃Nb⁴⁺O₄[1] and Li₄Mo⁶⁺O₅[2], which have higher lithium contents than that of Li₂MnO₃, are potentially utilized as host structures for a new series of high-capacity electrode materials. Recently, Li₂Ti⁴⁺O₃ is also proposed as the host structure for high-capacity electrode materials with redox reaction of oxide ions.[3] Mn³⁺-substituted sample, 0.5Li₂TiO₃ – 0.5LiMnO₂ (Li₁.₂Ti₀.₄Mn₀.₄O₂), delivers large reversible capacity of 300 mAh g⁻¹ as shown in Figure 1a. Available energy density of Li₁.₂-xTi₀.₄Mn₀.₄O₂ exceeds 1,000 mWh g⁻¹ as a positive electrode material. Moreover, charge compensation is realized by oxidation of oxide ions as evidenced by O K-edge X-ray absorption spectroscopy (Figure 1b) as a reversible process.

From these results, we will further discuss the possibility of high-capacity positive electrode materials, which effectively use the solid-state redox of oxide ions for the charge compensation, consisting of only 3d-transition metals.

Figure 1. (a) Charge/discharge curves of ball-milled Li₁.₂Ti₀.₄Mn₀.₄O₂ in the voltage range of 1.5 – 4.8 V at a rate of 5.0 mA g⁻¹ at 50 °C, and (b) changes in O K-edge XAS spectra on charge for Li₁.₂-xTi₀.₄Mn₀.₄O₂.

References

Acknowledgements
This research has been partly supported by Advanced Low Carbon Technology Research and Development Program of the Japan Science and Technology Agency (JST) Special Priority Research Area “Next-Generation Rechargeable Battery.”