Nuclear Magnetic Resonance spectroscopy is especially useful for the characterization of the chemical nature of the environments of 7Li spins. In materials like LiVPO$_4$F, the structure seems well ordered, as seen by XRD or TEM, however, 7Li NMR spectroscopy shows that 10-20% of the lithium content is in a different environment than the crystallographic site. Dipolar correlation experiments show that these lithium atoms are within a nanometer of the main site, and therefore are defects within the structure.

On the other hand, pulsed field gradients can also provide the positions of 7Li spins in space. This feature is the key to the success of MRI of working batteries. Moreover, the spectra of the cathodes and anodes in a working battery can be separated in situ by PFG-NMR, and the power of spectroscopic imaging is demonstrated in a LiCoO$_2$/Li$_4$Ti$_5$O$_12$ battery. In favorable cases, the lithiation front can be observed in thick electrodes with a 100 μm resolution, highlighting the limitation in lithium transport in electrodes with porosity issues.