Solid-State Redox Reaction of Oxide Ions for Rechargeable Batteries

Naoaki Yabuuchi

Department of Green and Sustainable Chemistry, Tokyo Denki University

5 Senju Asahi-Cho, Adachi, Tokyo 120-8551, Japan

The use of anion redox, especially oxide ions, is a crucial strategy to design and develop new electrode materials with high gravimetric/volumetric energy density for rechargeable lithium batteries. Reversible capacity of electrode materials is potentially further increased by the enrichment of lithium contents with less transition metals in the close-packed structure of oxide ions. Our group has reported that $Li_3Nb^{5+}O_4[1]$ and $Li_4Mo^{6+}O_5[2]$, which have higher lithium contents than that of Li₂MnO₃, are potentially utilized as host structures for a new series of high-capacity electrode materials. Recently, Li₂Ti⁴⁺O₃ is also proposed as the host structure for high-capacity electrode materials with redox reaction of oxide ions.[3] Mn^{3+} -substituted sample, $0.5Li_2TiO_3 - 0.5LiMnO_2$ $(Li_{1,2}Ti_{0,4}Mn_{0,4}O_2)$, delivers large reversible capacity of 300 mAh g⁻¹ as shown in Figure 1a. Available energy density of $Li_{1.2-x}Ti_{0.4}Mn_{0.4}O_2$ exceeds 1,000 mWh g⁻¹ as a positive electrode material. Moreover, charge compensation is realized by oxidation of oxide ions as evidenced by O K-edge Xray absorption spectroscopy (Figure 1b) as a reversible process.

From these results, we will further discuss the possibility of high-capacity positive electrode materials, which effectively use the solid-state redox of oxide ions for the charge compensation, consisting of only 3d-transtion metals.

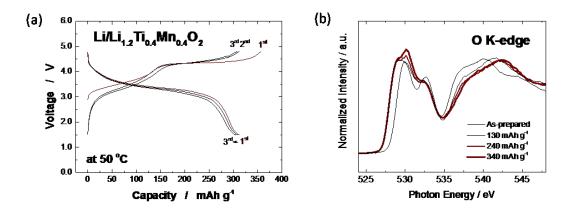


Figure 1. (a) Charge/discharge curves of ball-milled $Li_{1,2}Ti_{0,4}Mn_{0,4}O_2$ in the voltage range of 1.5 – 4.8 V at a rate of 5.0 mA g⁻¹ at 50 °C, and (b) changes in O K-edge XAS spectra on charge for Li_{1.2}- $_{x}$ Ti_{0.4}Mn_{0.4}O₂.

References

[1] N. Yabuuchi et al., Proceedings of the National Academy of Sciences, **112**, 7650 (2015). [2] N. Yabuuchi, Y. Tahara, S. Komaba, S. Kitada, and Y. Kajiya, Chemistry of Materials, 28, 416 (2016).[3] N. Yabuuchi et al., submitted

Acknowledgements

This research has been partly supported by Advanced Low Carbon Technology Research and Development Program of the Japan Science and Technology Agency (JST) Special Priority Research Area "Next-Generation Rechargeable Battery."