A new high performance V_2O_5 - based cathode for sodium-ion batteries.

M. Safrany-Renard, D. Muller-Bouvet, R. Baddour-Hadjean, J. P. Pereira-Ramos

Institut de Chimie et des Matériaux Paris Est, ICMPE/GESMAT, UMR 7182 CNRS Université Paris Est Créteil, 2 rue Henri Dunant 94320 Thiais, France

The growing interest in the Na-ion batteries is justified by cost and availability of sodium resources combined with an insertion chemistry close to the lithium one. While α -V₂O₅ was one of the first example of Li intercalation compounds only a few works report Na insertion into that layered host lattice. We recently reported sodium insertion into the so called α -V₂O₅ with a capacity of 120 mAh/g at a low voltage of 1.6V [1]. In this work a new sodium insertion compound is prepared by the chemical oxidation of the γ -LiV₂O₅ using NO₂BF₄ as oxidizing agent. One sodium ion per mole of γ -V₂O₅ can be reversibly inserted at a remarkably high potential of 3.3V against 1.6V in the usual $\alpha V_2 O_5$. The $\gamma^2 - V_2 O_5$ electrode can deliver a reversible and stable capacity of 110mAh/g at C/10 at room temperature (RT). A high capacity of 90 mAh/g is also available at higher 2C rate. An excellent capacity retention is also demonstrated at RT with 105 mAh/g recovered after 100 cycles at C/10. A two phases mechanism involving the γ' -V₂O₅ / γ -NaV₂O₅ system is evidenced from XRD and Raman spectroscopy experiments. The structural features of the fully sodiated γ -NaV₂O₅ phase with an usual expansion of the interlayer spacing ($+2\text{\AA}/\text{compared}$ to $\gamma'-V_2O_5$) are solved. These results reveal that the γ '-V₂O₅ constitutes a new competitive cathode material for the reversible intercalation of sodium ions.

Figure 1: Discharge-charge curves of γ -V₂O₅ in a 1M NaClO4/PC electrolyte at 50°C (C/60). Right: Rate capability behavior at RT.

[1] D. Muller-Bouvet, R. Baddour-Hadjean, M. Tanabe, L.T.N. Huynh, M.L.P. Le, J.P. Pereira-Ramos. Electrochim. Acta.176 (2015) 586.