A new high performance $\mathrm{V}_{2} \mathrm{O}_{5}$ - based cathode for sodium-ion batteries.

M. Safrany-Renard, D. Muller-Bouvet, R. Baddour-Hadjean, J. P. Pereira-Ramos
Institut de Chimie et des Matériaux Paris Est, ICMPE/GESMAT, UMR 7182
CNRS Université Paris Est Créteil, 2 rue Henri Dunant 94320 Thiais, France

The growing interest in the Na -ion batteries is justified by cost and availability of sodium resources combined with an insertion chemistry close to the lithium one. While $\alpha-\mathrm{V}_{2} \mathrm{O}_{5}$ was one of the first example of Li intercalation compounds only a few works report Na insertion into that layered host lattice. We recently reported sodium insertion into the so called $\alpha-\mathrm{V}_{2} \mathrm{O}_{5}$ with a capacity of $120 \mathrm{mAh} / \mathrm{g}$ at a low voltage of 1.6 V [1]. In this work a new sodium insertion compound is prepared by the chemical oxidation of the $\gamma-\mathrm{LiV}_{2} \mathrm{O}_{5}$ using $\mathrm{NO}_{2} \mathrm{BF}_{4}$ as oxidizing agent. One sodium ion per mole of $\gamma^{\prime}-\mathrm{V}_{2} \mathrm{O}_{5}$ can be reversibly inserted at a remarkably high potential of 3.3 V against 1.6 V in the usual $\alpha \mathrm{V}_{2} \mathrm{O}_{5}$. The $\gamma^{\prime}-\mathrm{V}_{2} \mathrm{O}_{5}$ electrode can deliver a reversible and stable capacity of $110 \mathrm{mAh} / \mathrm{g}$ at $\mathrm{C} / 10$ at room temperature (RT). A high capacity of $90 \mathrm{mAh} / \mathrm{g}$ is also available at higher 2 C rate. An excellent capacity retention is also demonstrated at RT with $105 \mathrm{mAh} / \mathrm{g}$ recovered after 100 cycles at $\mathrm{C} / 10$. A two phases mechanism involving the $\gamma^{\prime}-\mathrm{V}_{2} \mathrm{O}_{5} / \gamma-\mathrm{NaV}_{2} \mathrm{O}_{5}$ system is evidenced from XRD and Raman spectroscopy experiments. The structural features of the fully sodiated $\gamma-\mathrm{NaV}_{2} \mathrm{O}_{5}$ phase with an usual expansion of the interlayer spacing ($+2 \AA$ A/compared to $\gamma^{\prime}-\mathrm{V}_{2} \mathrm{O}_{5}$) are solved. These results reveal that the $\gamma^{\prime}-\mathrm{V}_{2} \mathrm{O}_{5}$ constitutes a new competitive cathode material for the reversible intercalation of sodium ions.

Figure 1: Discharge-charge curves of $\gamma^{\prime}-\mathrm{V}_{2} \mathrm{O}_{5}$ in a $1 \mathrm{M} \mathrm{NaClO} 4 / \mathrm{PC}$ electrolyte at $50^{\circ} \mathrm{C}(\mathrm{C} / 60)$. Right: Rate capability behavior at RT.
[1] D. Muller-Bouvet, R. Baddour-Hadjean, M. Tanabe, L.T.N. Huynh, M.L.P. Le, J.P. Pereira-Ramos. Electrochim. Acta. 176 (2015) 586.

